经典排序算法在面试中占有很大的比重,也是基础,为了未雨绸缪,在寒假里整理并用Python实现了七大经典排序算法,包括冒泡排序,插入排序,选择排序,希尔排序,归并排序,快速排序,堆排序。希望能帮助到有需要的同学。之所以用Python实现,主要是因为它更接近伪代码,能用更少的代码实现算法,更利于理解。
本篇博客所有排序实现均默认从小到大。
一、冒泡排序 BubbleSort
介绍:
冒泡排序的原理非常简单,它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
步骤:
- 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
- 对第0个到第n-1个数据做同样的工作。这时,最大的数就“浮”到了数组最后的位置上。
- 针对所有的元素重复以上的步骤,除了最后一个。
- 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
源代码:(python实现)
1 2 3 4 5 6 7 | def bubble_sort(arry): n = len(arry) #获得数组的长度 for i in range(n): for j in range(1,n-i): if arry[j-1] > arry[j] : #如果前者比后者大 arry[j-1],arry[j] = arry[j],arry[j-1] #则交换两者 return arry |
二、选择排序 SelectionSort
介绍:
选择排序无疑是最简单直观的排序。它的工作原理如下。
步骤:
- 在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
- 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
- 以此类推,直到所有元素均排序完毕。
源代码:(python实现)
1 2 3 4 5 6 7 8 9 | def select_sort(ary): n = len(ary) for i in range(0,n): min = i #最小元素下标标记 for j in range(i+1,n): if ary[j] < ary[min] : min = j #找到最小值的下标 ary[min],ary[i] = ary[i],ary[min] #交换两者 return ary |
三、插入排序 InsertionSort
介绍:
插入排序的工作原理是,对于每个未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
步骤:
- 从第一个元素开始,该元素可以认为已经被排序
- 取出下一个元素,在已经排序的元素序列中从后向前扫描
- 如果被扫描的元素(已排序)大于新元素,将该元素后移一位
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
- 将新元素插入到该位置后
- 重复步骤2~5
排序演示:
源代码:(python实现)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | def insert_sort(ary): n = len(ary) for i in range(1,n): if ary[i] < ary[i-1]: temp = ary[i] index = i #待插入的下标 for j in range(i-1,-1,-1): #从i-1 循环到 0 (包括0) if ary[j] > temp : ary[j+1] = ary[j] index = j #记录待插入下标 else : break ary[index] = temp return ary |
四、希尔排序 ShellSort
介绍:
希尔排序,也称递减增量排序算法,实质是分组插入排序。由 Donald Shell 于1959年提出。希尔排序是非稳定排序算法。
希尔排序的基本思想是:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序。
例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ]
,如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样:
13 14 94 33 8225 59 94 65 2345 27 73 25 3910
然后我们对每列进行排序:
10 14 73 25 2313 27 94 33 3925 59 94 65 8245
将上述四行数字,依序接在一起时我们得到:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ]
。这时10已经移至正确位置了,然后再以3为步长进行排序:
10 14 7325 23 1327 94 3339 25 5994 65 8245
排序之后变为:
10 14 1325 23 3327 25 5939 65 7345 94 8294
最后以1步长进行排序(此时就是简单的插入排序了)。
源代码:(python实现)
1 2 3 4 5 6 7 8 9 10 11 12 13 | def shell_sort(ary): n = len(ary) gap = round(n/2) #初始步长 , 用round四舍五入取整 while gap > 0 : for i in range(gap,n): #每一列进行插入排序 , 从gap 到 n-1 temp = ary[i] j = i while ( j >= gap and ary[j-gap] > temp ): #插入排序 ary[j] = ary[j-gap] j = j - gap ary[j] = temp gap = round(gap/2) #重新设置步长 return ary |
上面源码的步长的选择是从n/2
开始,每次再减半,直至为0。步长的选择直接决定了希尔排序的复杂度。在上有对于步长串行的详细介绍。
五、归并排序 MergeSort
介绍:
归并排序是采用分治法的一个非常典型的应用。归并
排序的思想就是先递归
分解数组,再合
并数组。
先考虑合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。
再考虑递归分解,基本思路是将数组分解成left
和right
,如果这两个数组内部数据是有序的,那么就可以用上面合并数组的方法将这两个数组合并排序。如何让这两个数组内部是有序的?可以再二分,直至分解出的小组只含有一个元素时为止,此时认为该小组内部已有序。然后合并排序相邻二个小组即可。
排序演示:
源代码:(python实现)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | def merge_sort(ary): if len(ary) <= 1 : return ary num = int(len(ary)/2) #二分分解 left = merge_sort(ary[:num]) right = merge_sort(ary[num:]) return merge(left,right) #合并数组 def merge(left,right): '''合并操作, 将两个有序数组left[]和right[]合并成一个大的有序数组''' l,r = 0,0 #left与right数组的下标指针 result = [] while l |
六、快速排序 QuickSort
介绍:
快速排序通常明显比同为Ο(n log n)的其他算法更快,因此常被采用,而且快排采用了分治法的思想,所以在很多笔试面试中能经常看到快排的影子。可见掌握快排的重要性。步骤:
- 从数列中挑出一个元素作为基准数。
- 分区过程,将比基准数大的放到右边,小于或等于它的数都放到左边。
- 再对左右区间递归执行第二步,直至各区间只有一个数。
排序演示:
源代码:(python实现)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | def quick_sort(ary): return qsort(ary,0,len(ary)-1) def qsort(ary,left,right): #快排函数,ary为待排序数组,left为待排序的左边界,right为右边界 if left >= right : return ary key = ary[left] #取最左边的为基准数 lp = left #左指针 rp = right #右指针 while lp < rp : while ary[rp] >= key and lp < rp : rp -= 1 while ary[lp] <= key and lp < rp : lp += 1 ary[lp],ary[rp] = ary[rp],ary[lp] ary[left],ary[lp] = ary[lp],ary[left] qsort(ary,left,lp-1) qsort(ary,rp+1,right) return ary |
七、堆排序 HeapSort
介绍:
堆排序在 top K 问题中使用比较频繁。堆排序是采用二叉堆的数据结构来实现的,虽然实质上还是一维数组。二叉堆是一个近似完全二叉树 。
二叉堆具有以下性质:
- 父节点的键值总是大于或等于(小于或等于)任何一个子节点的键值。
- 每个节点的左右子树都是一个二叉堆(都是最大堆或最小堆)。
步骤:
-
构造最大堆(Build_Max_Heap):若数组下标范围为0~n,考虑到单独一个元素是大根堆,则从下标
n/2
开始的元素均为大根堆。于是只要从n/2-1
开始,向前依次构造大根堆,这样就能保证,构造到某个节点时,它的左右子树都已经是大根堆。 -
堆排序(HeapSort):由于堆是用数组模拟的。得到一个大根堆后,数组内部并不是有序的。因此需要将堆化数组有序化。思想是移除根节点,并做最大堆调整的递归运算。第一次将
heap[0]
与heap[n-1]
交换,再对heap[0...n-2]
做最大堆调整。第二次将heap[0]
与heap[n-2]
交换,再对heap[0...n-3]
做最大堆调整。重复该操作直至heap[0]
和heap[1]
交换。由于每次都是将最大的数并入到后面的有序区间,故操作完后整个数组就是有序的了。 -
最大堆调整(Max_Heapify):该方法是提供给上述两个过程调用的。目的是将堆的末端子节点作调整,使得子节点永远小于父节点 。
排序演示:
源代码:(python实现)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | def heap_sort(ary) : n = len(ary) first = int(n/2-1) #最后一个非叶子节点 for start in range(first,-1,-1) : #构造大根堆 max_heapify(ary,start,n-1) for end in range(n-1,0,-1): #堆排,将大根堆转换成有序数组 ary[end],ary[0] = ary[0],ary[end] max_heapify(ary,0,end-1) return ary #最大堆调整:将堆的末端子节点作调整,使得子节点永远小于父节点 #start为当前需要调整最大堆的位置,end为调整边界 def max_heapify(ary,start,end): root = start while True : child = root*2 +1 #调整节点的子节点 if child > end : break if child+1 <= end and ary[child] < ary[child+1] : child = child+1 #取较大的子节点 if ary[root] < ary[child] : #较大的子节点成为父节点 ary[root],ary[child] = ary[child],ary[root] #交换 root = child else : break |
总结
下面为七种经典排序算法指标对比情况: